
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Design Document: Cyren 
 

Members:  
Justin Shaver, Thomas Frye 
Will Pigg, Chandler Davis, 

Caleb Hendrickson, Dan Bohlke  



1 

 
Table of Contents 
 
Acknowledgement 
Problem Statement 
Operating Environment 
Intended Users and Intended Uses 
Design Specification Overview 
Use Case Diagram 
Assumptions and Limitations 
Technical Approach 
Project Deliverables and Specifications 
Previous Work / Literature Review 
Proposed Solutions 
Assessment of Proposed Solutions 
Proposed Design Method 
Interface Specifications 
High Level Block Diagram 
Implementation Issues and Challenges 
Design Analysis 
Process Details 
Testing Requirements Considerations 
Design Testing and Implementation 
Safety Considerations 
Possible Risks and Risk Management 
Estimated Resources 
Project Timeline 
Conclusion 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 

3 
3 
4 
4 
5 
7 
8 
8 
9 

10 
16 
16 
17 
24 
27 
28 
30 
33 
34 
35 
38 
39 
40 
42 
43 



2 

List of Figures 
 
Figure 1: Use Case Diagram 
Figure 2: Data Flow Diagram 
Figure 3: Design Diagram 
Figure 4: Block Diagram 
Figure 5: Design Testing Flowchart 
Figure 6: Function Testing Flowchart 
Figure 7: MP3 vs FLAC 
Figure 8: FFTW Visualization 
 
List of Tables 
 
Table 1: Music Equipment Features 
Table 2: Interface Specifications 
Table 3: Risk Assessment 
Table 4: Estimated Resources 
Table 5: Project Timeline 
 
List of Pictures 
 
Picture 1: Block Diagram of Circuit 
Picture 2: Overview 
Picture 3: Baseboard 
Picture 4: Side Wall 
Picture 5: Back Panel 
Picture 6: Top Panel 
Picture 7: LCD Panel 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

7 
18 
24 
27 
35 
36 
41 
41 

 
 
 

20 
25 
39 
40 
42 

 
 
 

19 
21 
21 
22 
22 
22 
22 



3 

Acknowledgement 
 
Our client, Dr. Randall Geigar, has made this project very open ended. All of the design 
features, use cases, functional requirements will be up to our team to decide. The only 
requirement is that the target audience must be musicians and this project must utilize 
our skills as engineers and that we learn and grow from this experience. Our adviser, 
Dr. Chen Degang, has offered his support with the technical aspect of this project, 
specifically electronics, in the form of advice or answering questions. Dr. Geigar has 
also offered his assistance with any advice we may need. 
 
Problem Statement 
 
Musicians often require many devices in order to achieve desired sounds. In the case of 
a guitarist, a combination of several pedals may be required to produce a specific level 
of distortion to emulate a bassline. Another combination of pedals would be needed for 
the lead or chorus. When working with a multitude of devices, the musician will have to 
make sure that there are no compatibility issues and spend a great deal of time 
adjusting the device settings to find combinations that sound well together. Many music 
devices do not have features to save or load settings, which requires the musician to 
manually adjust their equipment each time they switch between sounds or effects. The 
musician is also required to store their equipment which may pose a problem under tight 
constraints. In the case of live performances, especially those that will require travel, 
having the space required in a vehicle may be quite the challenge along with ensuring 
that the equipment remains safe and undamaged. Also, working with many devices 
while on stage may require frequent breaks between songs to switch between 
equipment or adjust settings. When performing in a band, each musician will often have 
their own equipment for their instrument which even further emphasizes the problem 
with requiring breaks during performances along with storage and transportation. The 
need to have several devices for music production presets problems with storing and 
transporting the equipment, ensuring compatibility between devices, and seamless live 
performances.  



4 

Operating Environment 
 
The end product will be designed to appeal specifically to musicians and to function 
properly in any environment in which they wish to produce music. This will include 
casual use at home, in an open space for jam session with band mates, or on stage 
during a live performance. For the design to maintain functionality in these conditions, 
the product must be durable. The device will often be used on the floor where it could 
potentially collect dust and frequent scuffs and scratches. It will be important the device 
chassis is stable and made of a robust material. This will also be important for 
interacting with the device as it will have several stomp buttons and pedals. The product 
will also be expected to withstand frequent travel, especially for users that will be using 
the device for live performances or on tour. In addition, it is vital that the device can 
interface with existing music equipment, whether that be instruments, speakers, MIDI 
controllers, etc. This will require the use of pre-existing standardized connections for the 
I/O. 
 
Intended Users and Intended Uses 
 
As stated before, the target audience for this product is musicians. To appeal to the 
widest range of musicians possible, the design will be compatible with any instrument 
that can interface electronically. The device will be able to interface with multiple 
instruments at the same time, appealing to bands or even the one man band type. The 
end product could be used in an educational settings as well, possibly by teacher for 
demonstration purposes. 
 
The design is intended to be used by a musician, alone or in a group, to interface with 
one or more instruments and produce music with a large and diverse selection of effects 
and layering options that are easy and user friendly to implement or modify while 
keeping all the sound processing on one device. The design will feature the ability to 
save and load effect combinations and layers allowing for seamless transitions between 
desired sounds and recording those sounds.  



5 

Design Specification Overview 
 
The design will feature the ability to save and load effect combinations and layers 
allowing for seamless transitions between desired sounds and recording those sounds. 
The design will have the capabilities of several types of music production devices. 
Modest size of the unit makes storing and transporting easy. In addition, it is vital that 
the device can interface with existing music equipment, whether that be instruments, 
speakers, MIDI controllers, etc. Universal inputs will ensure compatibility between 
devices, and benefiting seamless live performances. The design is intended to be used 
by a musician, alone or in a group, to interface with one or more instruments and 
produce music with a large and diverse selection of effects and layering options that are 
easy and user friendly to implement or modify while keeping all the sound processing on 
one device. 
 
Functional Requirements 
 

● Loops playback recorded on start and stop 
● Ability to record multiple loops in parallel in the form of layers 
● Ability to save current loops and load previous saved or downloaded loops 
● Connects to existing guitar effects pedals and can change effect levels  
● Able to change order or settings of pedals  
● Ability to manipulate effects on the device/application quickly 
● The phone/desktop application will load preset effects or layers to the device. 
● Able to create, edit, and stack live/previously saved recorded segments to be 

“looped” 
● Allow the user to create, edit, and stack sound effects on real-time inputs and 

recorded loop segments 
● Be able to store sound effect “profiles”, share sound effect profiles, and load 

sound effect profiles 
 
Non-functional requirements 
 

● Usability 
○ Device will be able to be powered from a standard wall outlet. 
○ Device will be compatible with standard audio connections. 
○ Device controller will have adequate hardware resources to handle raw 

audio processing with minimal latency. 
○ Device chassis will be durable to withstand stomping for pedal and button 

functionality as well as wear and tear from travel. 
○ Device will have Bluetooth connectivity to interface with phone application 

and USB connectivity to interface with desktop. 
○ Supplemental phone application will be available for download to enhance 

experience 
○ LCD screens will provide user a more intuitive interface for device 

functions 



6 

● Security 
○ Access permission for the application may only be granted by the 

device/application administrator account. 
● Reliability 

○ Device must be connected to the application via bluetooth at all times 
○ If the system crashes, it will reboot to a safe startup state, losing any 

unsaved presets 
○ Must be durable and well built in order to withstand heavy use(stomping, 

stage performance, travel, etc.) and provide high-quality feel 
● Performance 

○ Layer visualization must be displayed in real time 
○ Effects levels must be displayed in real-time 
○ Live-looping must be instantaneous real-time(start, stop, add, delete) 
○ Playback must be in real-time with minimal latency 
○ Effects must be applied within several seconds after user indication 
○ Recording function must begin immediately, preceded by a 4 count 

“metronome” 
○ Pre-saved pedal & effect configurations must be able to load within 60 

seconds 
○ Should be compatible with any instrument that can interface electronically 

● Availability  
○ System should maintain all available functions for while device connected 

to the application 
○ System will have complete device functionality while not connected to the 

application 
○ No maintenance period for version updates 

● Scalability 
○ System must be able to handle up to 4 loop layers and 20 effects 

simultaneously. 
○ The maximum concurrent users will be the amount of instruments that are 

interfacing with the device along with a person controlling the device 
through the phone/desktop application. This will most likely be no greater 
than 4 users.  



7 

Use Case Diagram 
 
Below is a visual representation of the intended uses of our design in the form of a use 
case diagram. 
 

 
Figure 1: Use Case Diagram  



8 

Assumptions and Limitations 
 
Assumptions 
 

● The maximum of simultaneous users will be the amount of people playing 
instruments that are currently interfacing with the device along with, optionally, a 
person controller the device via the phone/desktop application. 

● The primary user will be the person that has the device at their feet, will likely be 
a guitarist or pianist, but could be any other type of musician. 

● While the musician is using the device with a instrument, it is intended that the 
user will interact primarily with the device itself rather than the phone/desktop 
application. 

● The phone/desktop application will be used primarily to load preset effects or 
layers to the device before the musician intends to perform or play music. 

 
Limitations 
 

● Device must be able to be powered from a standard wall outlet. 
● Device must be compatible with standard audio connections. 
● Device controller must have adequate hardware resources to handle raw audio 

processing with minimal latency. 
● Device chassis must be durable to withstand stomping for pedal and button 

functionality as well as wear and tear from travel. 
● Device must have bluetooth connectivity to interface with phone application and 

USB connectivity to interface with desktop. 
 
Technical Approach 
 
Cyren is meant to fulfill many different needs that a musician may desire, but this is 
obviously a larger task to accomplish if we keep the goals vague. To avoid this, we 
knew we had to construct clearly itemized goals and deliverables and use them as a 
guide to reach our end goal. Like stated above in the document, Cyren’s goal is to 
provide a looping/sound effect device for musicians that is both powerful and intuitive. 
Often times the biggest struggle with devices like these is the user’s ability to 
understand and utilize the device’s full potential. If we keep this in mind and make this 
our goal during development, we will be closer to achieving the desired end product. 
Along with being intuitive, we need to ensure that the product is durable, portable, and 
reliable. If this device is being used regularly by performers, being stomped on and what 
not, it needs to be able to withstand abuse while performing to its expected standards. 
By defining these goals, we then were able to move to planning. 
 
Using the deliverables, it helped us draft up a project plan to facilitate our project. First 
we had to as a group understand what type of technologies would go into the product 
and how to get from start to finish. We split the group into the areas that they strive best. 
Example being, our electrical engineering undergrad is going to focus on wiring I/O 



9 

devices together with the microprocessor while designing an optimal enclosure. Upon 
doing this, we were better able to become experts in the areas we were assigned, 
allowing us to perform proof of concepts (POC) to find the best technologies to use for 
our product. Once a POC was finished, the corresponding teammate would 
demonstrate their findings to the team and make an educated decision on what 
technology is best used for the task in front of them. Once demonstrated and approved 
by the team, we then move onto the next task’s research. It is important to note, that we 
do not start implementing the new found technologies until all research is completed, by 
doing this we will be more likely to find compatibility issues early on rather than when 
they arise from implementation. 
 
Project Goals and Deliverables 
 
Given the results of our meeting with our client, we discovered they would prefer to 
have a hands-off style approach. Our initial meeting showed us that they had many 
ideas, many of them not being completely related. By using some of their ideas and 
combining them with our own, we were able to construct our desired project goals and 
some itemized deliverables. 
 
Project Goals 
 
Our defined goals for our project are: 

● Provide a looping and sound effect device for both live musicians and music 
producers. 

● Ensure that our device is intuitive yet powerful at the same time. 
● Must be mobile and durable. 
● Take away limitations of performers with use of our product. 

 
Required Project Deliverables 
 
The final project (sound effect device) must: 

● Be able to create, edit, and stack live/old recorded segments to be “looped” 
● Allow the user to create, edit, and stack sound effects on real-time inputs and 

recorded loop segments 
● Be able to store sound effect “profiles”, share sound effect profiles, and load 

sound effect profiles 
● Be durable enough for heavy use and provide a quality feel to the device 
● Have a intuitive user interface while maximizing the potential of the device 
● Allow for the following inputs: XLR, L/R ¼ inch, 3.5mm auxiliary, MIDI, tuner 

knobs, stomp buttons/pedals, and expression pedal 
● Allow for the following outputs: ¼ inch headphone, L/R ¼ inch, MIDI 
● Be able to interface with the user either hands free through the device or through 

phone app to provide more applications  



10 

Previous Work / Literature Review 
 
Basic Terms 
 
Guitar Pedals 

● Effect pedals usually take the form of small metal boxes which sit on the floor in 
front of you. These can be switched on and off using your feet. Hence, pedals. 
The technology contained within these pedals is designed to alter your tone in 
any number of ways. One of the primary types of pedals around today are effects 
pedals. 

● Common Guitar Pedal effects would include: 
○ Delay/looping: Delay is a commonly-used effect where the pedal repeats 

your sound at predetermined intervals after you’ve played it. 
○ Reverb: Reverb simulates the sound of your instrument being played in a 

larger physical space. 
○ Drive: Overdrive is an effect that ‘pushes’ the guitar’s signal before it 

reaches the amplifier.  
○ Modulation: There are a few main types of modulation; chorus, phase, 

tremolo, wah and flange. These effects are very distinct and should be 
used with purpose/precision. 

○ Tremolo: Making your signal subtly cut in and out of volume. 
 
Live-Looping 

● Live looping is the recording and playback of a piece of music in real-time using 
either dedicated hardware devices, called loopers or phrase samplers, or 
software running on a computer with an audio interface. 

● Loopers allow you to record entire passages of play, then ‘loop’ them back 
(repeat them) whilst you play something new over the top. Lay down a basic 
chord progression, then solo of the top of it. 

● This offers the ability for a single musician to create multiple layers to their live 
music, resulting in a sound close to that of a "full band". 

 
Effect Stacking (Chaining) 

● Guitar Pedal “Chaining” is the technique of patching two or more of these effects 
pedals together so that the final output is a combination of the original recording 
and the effects stacked on top of it. Combining pedals together can create a very 
unique, distinct sound and when used correctly can sound very pleasing to the 
ear. 

● Effect stacking can also be done through the means of a software that can apply 
and stack effects to a loop, such as the combination of a DAW and VST 

  



11 

Live-looping Hardware 
 
Boss RC-300 

● The BOSS RC-300 is a top of the line Loop Station. Record, playback, and 
control three separate stereo tracks, each with transport-control footswitches. 
RC-300 also features a master expression pedal, a 3-channel mixer, dedicated 
volume knobs for each channel, 16 onboard effects optimized for looping, and 
MIDI I/O. 

● Strengths: 
o The internal memory can support up to 3 hours of continuous music to the 

internal memory with effects added.  
o USB connectivity, XLR input, and 2 x Instrument, 1/8" (Stereo) inputs 

make the device functional for many types of input.  
o USB port allows for easy downloads. 

● Weaknesses: 
o Lack of a visual user interface is not friendly to beginners 
o Design only allows 3 tracks to run simultaneously  
o Additional footswitches are still required for full hands-free operation 

● Takeaways for our project: 
o We may have to sacrifice functionality if we want to increase ease of use 

and to appeal to the non-pro player 
 
Live-Looping Software 
 
Ableton’s Live-looping  

● Ableton’s live looper is one example of the many software based loopers. This             
looper is basic, but standard with all the functionalities of a loop pedal. 

● Features include: recording, playback, clear track, undo, pitch shift up to 3            
octaves above & below, in semitone intervals, reverse, double length, and halve           
length 

● You are also able to quantize the loop to the current BPM, or have it set the                 
tempo depending on your signal. It can also mute the input, so the channel only               
plays back the loop, not the input signal when recording with a live instrument or               
midi controller. 

● You can run as many loopers as you like, (depending on your CPU power) and               
can have them on separate tracks, or on one track inside an effects rack. 

● Strengths: 
○ As long as your CPU can handle it, you can run as many looper tracks 

with as many effects on those tracks as desired 
○ Pitch Shift, Double Length, Halve length, Reverse 

● Takeaways for our project: 
○ We will have to scale the amount of effects we that can be applied using 

our device in accordance to our CPU power  
○ Most loopers have a reverse functionality  

 



12 

Effect stacking Software 
 
Guitar Rig (and RigKontrol) 

● Guitar rig is an amp and effects modeling software package developed by native 
instruments. Primarily designed for electric guitar and bass, the software uses 
amplifier modeling to allow real-time digital signal processing in standalone and 
studio (VST/DXi/RTAS/AU) environments 

● Guitar Rig Pro offers 54 modeled stomp boxes and effects from foot pedals to 
complex studio tools. These effects can be used on guitars, vocals, synths, 
drums, etc. 

● The Guitar Rig environment is a modular system, providing capabilities for 
multiple amplifiers, effects pedals and rack mounted hardware. The software 
simulates a number of devices such as preamplifiers, cabinets and microphones. 

● The system allows customization of module parameters – either through 
manipulation of the graphical interface, use of a MIDI controller or employment of 
the RigKontrol foot control pedal. Settings can be saved as presets and exported 
and shared with other users.  

● RigKontrol is a foot-operated USB and MIDI controller that is directly compatible 
with with the guitar rig software. It contains an audio interface and Direct 
box, allowing integration with live sound environments. 

● The RigKontrol device can operate Guitar Rig using its’ eight switches and 
an expression pedal. 

● Strengths: 
○ Effects can be applied to any instrument 
○ Modular design 
○ Can be operated in many different environments 
○ 54 modeled stomp boxes 
○ Preset browser 

● Weaknesses: 
○ Quality of effects might be questionable, may not have the same authentic 

sound as hardware 
● Takeaways for our project: 

○ The modular design allows for Guitar Rig to be operated solely by the 
RigKontrol controller if desired. 

○ The audio interface and DI (Direct Box) allows for integration with live 
sound environments.  

○ The preset browser is also something to take note of, this would increase 
ease of use for beginners. 

  

https://en.wikipedia.org/wiki/Modular_programming
https://en.wikipedia.org/wiki/Guitar_amplifier
https://en.wikipedia.org/wiki/Effects_pedal
https://en.wikipedia.org/wiki/Rack_mount
https://en.wikipedia.org/wiki/Computer_hardware
https://en.wikipedia.org/wiki/Preamplifier
https://en.wikipedia.org/wiki/Microphone
https://en.wikipedia.org/wiki/Parameters
https://en.wikipedia.org/wiki/MIDI_controller
https://en.wikipedia.org/wiki/Default_(computer_science)
https://en.wikipedia.org/wiki/USB
https://en.wikipedia.org/wiki/MIDI_controller
https://en.wikipedia.org/wiki/Sound_card
https://en.wikipedia.org/wiki/DI_box
https://en.wikipedia.org/wiki/DI_box
https://en.wikipedia.org/wiki/Switch
https://en.wikipedia.org/wiki/Expression_pedal


13 

Looping and effect stacking hardware 
 
Boomerang III phrase sampler 

● Boomerang III is a guitar looper and effects pedal that features four loop tracks 
which can be played in tandem with many effects as well as unlimited stacking. 
Boomerang III is made for solo performers who want complex sound or for users 
wanting to create experimental new sounds with a wide array of effects. 

● Strengths: 
○ Great for live performance 
○ Great synchronization 

● Weaknesses: 
○ Has limited memory, cannot run pre-recorded tracks 

● Takeaways for our project:  
○ Keep in mind who are target users are and implement functionalities 

based on what would appeal to those users. The Boomerang is a good 
example of a looper that works well for its intended audience.  

 
Digitech Jamman Solo XT Looper 

● Digitech Jamman Solo Looper is a pedal that is friendly toward the beginner 
guitar player. It offers two play modes for recording: 

○ “Free Form” looping style, where the loop is set according to the timing of 
your pedal-presses. In “Free Form” style, you’ll need no instruction, simply 
choose a location for the loop and tap the pedal to start looping! There’s a 
color-coded LED light to tell you whether you’re recording, playing or 
overdubbing. 

○ “Auto-Quantized” looping, where you receive some assistance from the 
pedal to keep everything in time 
To activate the quantization feature, you simply have to dial in a tempo 
before you start playing. You can either do this by going into the menus 
and manually dialing in a BPM, or by simply pressing the “Tempo” button 
and then tapping the pedal in your desired beat. The rhythm guide will 
start playing, which you can turn up or down using the “Rhythm Level” 
knob. If you hold the footswitch down you can remove the backing, or you 
can leave it playing if you want a guide (there are nine different options if 
you want to change the sound). The process is pretty much the same as 
recording free-form, except that you get a one-bar count in before you 
record. If your timing is a little off on your pedal presses, the pedal will 
stretch or shorten it to keep everything in sync. The “Time-Stretching” 
feature comes alongside the quantization. This allows for the user to edit a 
recorded a loop to play at a faster/slower speed.  

● Strengths: 
○ Undo and redo feature 
○ Time stretching 
○ Many options for playback and stopping 
○ 2 types of play modes 



14 

● Weaknesses: 
○ The onboard memory is good for 35 minutes of stereo looping, but there 

are many options out there with much more memory. 
○ It’s not ideal for live use due to the single pedal (different combinations of 

pedal presses and holds call up other functions like stopping and undoing 
which may increase chances of a miscue) 

● Takeaways for our project: 
○ The Auto-quantize feature and rhythm guide may be something worth 

looking into for our project. This feature would be great for beginner 
players. 

 
Bluetooth enabled pedal boxes/effects software 
 
Zoom MS-100BT MultiStomp Guitar Pedal with Bluetooth 

● User interface and backlit LCD screen make programming intuitive and 
straightforward. Its stereo input jack accepts signal from passive and active 
guitars, as well as from line-level devices such as electronic keyboards and other 
effects processors, and its dual line-level output jacks enable you to record many 
sounds in stereo. 

● The MS-100BT allows you to use up to 6 effects simultaneously. You can also 
chain effects together in any order you like—important because an overdriven 
chorus sounds quite different from a chorused overdrive.  

● MS-100BT provides 50 areas of memory where you can store edited and 
chained multi-effects as patches (user-created presets).  

● MS-100BT also provides an option to create a custom list of up to 26 patches for 
the MS-100BT to cycle through as you step on the foot switch—handy for live 
performance. This list can be reordered or erased at any time. 

● The MS-100BT has a built-in chromatic tuner that supports all standard guitar 
tunings—even drop tunings of up to 3 semitones. When activated, the LCD 
immediately shows you whether the note you're playing is sharp, flat, or dead on. 
You can opt to either bypass the currently selected effect when tuning, or to mute 
the signal altogether, allowing you to tune in silence. 

● Tempo can be set in real time by either tapping a knob or the foot switch, 
providing you with instant synchronicity. 

● The MS-100BT Auto Save function ensures that every edit is automatically 
saved. Edited patches can be named, and can be stored in any memory area, 
allowing for convenient storage. 

● Strengths: 
○ Can use up to 6 effects simultaneously 
○ LCD screen interface 
○ Responsive tuning/ Many tuning features (chromatic tuning) 
○ Auto-Save functionality 
○ Ability to chain effects in specified order 
○ Can save user-created presets 

● Takeaways for our project: 



15 

○ Bluetooth connection 
○ Tempo and chromatic tuning features of the MS-100BT are great teaching 

tools for helping users that are not familiar with these concepts 
○ Certain effect combinations will be made useless if they are not able to be 

applied to the sound in the correct order  
 
Hotone XTOMP Bluetooth Modeling Effects Pedal 

● This stomp-box can be transformed into over 140 different classic, vintage and 
modern effects for guitar, bass and more. The XTOMP mini uses a mobile app 
(iOS and Android) via Bluetooth or a desktop app (Windows and macOS) via 
USB with an ever-expanding effects library to load your favorite tones into the 
pedal. Both apps are designed to easily manage your tones, including loading 
effects and firmware updates into the pedal via Bluetooth (mobile) or USB 
(desktop). 

● To simulate effects, the XTOMP mini utilizes advanced Comprehensive Dynamic 
Circuit Modeling (CDCM) technology. CDCM, which processes various incoming 
signals dynamically, is unlike current modeling systems that use the same 
modeling circuit regardless of the signal. CDCM allows for larger and more 
complex modeling algorithms, which equal more realistic and natural tones. This 
results in authentic-sounding effects. 

● Strengths: 
○ Large model/effects library, and 50 original effects 
○ Buffered bypass On/Off footswitch (100% pure analog signal path) 
○ Mobile App 

● Takeaways for our project: 
○ Bluetooth connection 
○ We may want to investigate modeling technologies like CDCM to do our 

effect modeling 
  



16 

Proposed Solutions 
 
We narrowed down four possible solutions that would satisfy the intended user: 

● Looper 
○ Loops playback recorded on start and stop along with ability to loop 

backwards 
○ Ability to record multiple loops in parallel in the form of layers 
○ Ability to save current loops and load previous saved or downloaded loops 

● Super Tube Amp 
○ Digitally replicates the distortion effect of a tube amp 
○ The sound processing hardware combines analog tube amp and digital 

technology 
● Special Effects Recommendation Software 

○ Iterates through many combinations of effects on sounds and identifies 
possible good combinations 

○ Utilize machine learning to analyze existing sounds and music 
● Effect Stacking 

○ Connects to existing guitar effects pedals and can change effect levels  
○ Change order or settings of pedals without physically reordering them 
○ Ability to manipulate effects remotely and quickly 

 
Assessment of Proposed Solutions 
 
As a group, we took the Proposed Solutions from earlier in the document and decided 
to make a combination of almost all of them (The Tube Amp excluded). This can lead to 
all sorts of benefits but also possible detriments. For starters, a solution with such a 
broad scope makes it less focused on one particular aspect and as such may be inferior 
to a more focused solution in a particular area. However the strength in this design is 
that we can accomplish one of our main goals: “Making the process of looping/sound 
effect manipulation easier for the average consumer”. Having so much functionality 
means that as a group we must be careful in selecting hardware (and software) that will 
be capable of supporting so much functionality. This has been taken into consideration 
as mentioned in the “Risks and Challenges” Section in which such capacity concerns 
are addressed.  
 
Our solution hopes to achieve singularity in being a device that not only allows the user 
to accomplish so much without the need of multiple devices, but is also easily usable by 
even inexperienced users. This itself will provide a road block later on as the design 
must be able to incorporate all of our ideas while still maintaining that simplicity we hope 
to achieve with a visual representation in the LCD screen. Through countless design 
drawings from our group, we all came to agree that this solution was optimal as it is 
making musicians lives easier, containing lots of varying functionality, and is still 
feasible.  



17 

Proposed Design Method 
 
As of now, the only implementation that has been done for our design is basic gui 
testing. We have also ordered and received several components for our pedalbox 
device. These components consist of the following: 

● Rotary encoders 
● Stomp switches 
● ADS1115 Adafruit ADC 
● InGenius ¼” Audio Input Jack 
● RockPro64 Microprocessors 

 
The stomp switches and ADC has been implemented in lab with oscilloscopes and an 
Arduino code. The proof of concept for these components were to simply learn how they 
will work and interact with a simple MPU. A regular guitar signal was implemented 
through the InGenius device, into the ADC, and into an Arduino for processing. The 
digital signal was then graphed to prove it was working. 
The plan for future implementation is to run a code with the RockPro64 and the rest of 
the system to create a simple input and output. On a grander scale, 5 stomp switches, 3 
analog inputs, all through 1 ADC. After this point, the components will be able to be 
placed and fastened into the enclosure. 
 
Design Architecture 
 
For our design architecture, we have chosen a Data Flow Software Architecture. 
Why we chose a Data Flow architecture: 

● This kind of architecture is used when input data to be transformed into output 
data through a series of computational manipulative components. 

● In data flow architecture, each filter will work independently and is designed to 
take data input of a certain form and produces data output to the next filter of a 
specified form. The filters don’t require any knowledge of the working of 
neighboring filters. This will be perfect for our design. We need the data 
transformation to be modular and able to service the different combinations of 
transformations on the data.  



18 

Data Flow Diagram 
 

 
Figure 2: Data Flow Diagram 
 
The figure represents a pipe-and-filter architecture. It uses both pipes (arrows) to 
transmit the data and filter components (boxes) to modify the data. 
 
To start the data flow, the user will do one of the following simultaneously: 

● Record a loop 
● Playback a loop 

 
Once the desired option has been selected, the data will be able to do any combination 
of the following: 

● FFT Transform (Add effect(s), adjust effect(s), etc.) 
● FLAC Compression (Saving layers, presets, etc.) 

 
After the appropriate operations, the signal will be interpreted via automatic music 
transportation into midi notes to be displayed on the user interface. Adjustments of 
effects or additions on effects will also be displayed. From here, the sound will be output 
through a DAC and transmitted to a broadcasting device. 
 
Circuit Design 
 
For circuit design, one single prefabricated power supply will be used to power the 
InGenius boards, stomp switches, LCDs (possibly), RockPro64, knobs, buttons, and 
pedals. Further research needs to be done into exactly what we will need to power our 
machine. A rough circuit block design can be seen in the figure below 
 



19 

 
Picture 1: Block Diagram of Circuit 
 
A few things to mention: the analog signal inputs will feed into our ADC breakout board 
to I2C wires on the RockPro64. This consists of two instrument channels and a 
microphone input. The knobs, buttons, and stomp switches will be wired to the MPU’s 
GPIO pins. One LCD will use the HDMI port of the RockPro64, and one LCD will use 
the MIPI DSI port on the RockPro64. 
 
For the software side of the project our team has been organised into different 
implementation tasks. These include interphasing in between the RockPro64 and the 
analog inputs, knobs, and buttons, programming the LCDs, and outputting an audio 
signal to speakers. 
  



20 

Proposed Design 
 
A combination of the following already existing music production tools: 
 

Looper Effect Stacking Device 

● Loops playback recorded on start 
and stop along with ability to loop 
backwards 

● Ability to record multiple loops in 
parallel in the form of layers 

● Ability to save current loops and 
load previous saved or 
downloaded loo 

● Connects to existing guitar effects 
pedals and can change effect 
levels  

● Change order or settings of pedals 
without physically reordering them 

● Ability to manipulate effects 
remotely and quickly 

Table 1: Music Equipment Features 
 
In our design, we took the properties of a looper and an effect stacking device and 
combined them into one device along with a supplemental application. This application 
will add many more functionalities to our product. The app will be able to save and load 
layers to the looper, control pedals/effects, and visualize instrument and effects layers. 
Our solution hopes to allow the user to perform all of these functionalities without the 
need of multiple devices, but is also easily usable by even inexperienced users because 
of the simplicity of the  visual representation of the LCD screen. 
 
Our proposed design consists of an enclosure that will be modeled in Autodesk Inventor 
2019. For prototyping purposes the initial enclosure will be made of wood. The 
enclosure can be seen in following pictures. These drawings were drafted with the 
scales at the top along with part names.  
 
The enclosure is designed to host a number of pieces, which will be named in order: 

1. Block Diagram for our circuit design 
2. Overview: The front view shows an expression pedal on the far left, a panel for 

interfacing with the user, and two more start/stop pedals on the far right.  
3. Design for the wooden baseboard to support the pedals and walls 
4. Side wall design with notches for wiring 
5. Back panel to support the input and output jacks 
6. Top panel of stomp box area to house the stomp switches 
7. LCD Panel Shell to house knobs and two displays 

 
 



21 

 
Picture 2: Overview 

 
Picture 3: Baseboard 



22 

 
Picture 4: Side Wall Picture 5: Back Panel 

 
Picture 6: Top Panel Picture 7: LCD Panel 



23 

Note that this enclosure is a rough prototype that functions mainly to implement the 
pedal functions as well as the LCD displays. The back panel may be left out for access 
to the RockPro64 and other components. This enclosure will be created in AutoCAD 
and milled into wooden boards. 
  
For circuit design most components will be wired in parallel to a GPIO pin on the 
microprocessor. The software will then continuously read the pins to see if input is 
detected, and then carry out a function. The main issue at the moment is power 
consumption. Further research is needed to decide if a larger power supply will be 
needed to control the unit. 
 
Also, further discussion is needed for the menu/GUI on the LCD screens. The current 
solution is to have an onslaught of menus that can be navigated through with knobs and 
buttons. Each knob, button, and stomp switch can be programmed through the menus. 
The main focus for prototyping is to have a structured unit with functioning input and 
output ports to the RockPro64. 
 
Modeling and Simulation 
 
There will be a lot of circuit modeling and simulation by MultiSim. The main focus is to 
make sure enough power will be brought into and distributed throughout the unit. The 
stomp switches will be simulated to perform certain tasks within a program, that is, each 
one will toggle independently to GPIO pins. Each simulation (for each component) will 
be to ensure that a proper signal can reach the GPIO pin for processing. When that is 
done, outputs will be tested. 
 
To test outputs in MultiSim function generators will be implemented. This is simply for 
the sake of viewing the routes taken to output jacks, and then speaker systems. Though 
this step may not seem as important as input testing, it will be beneficial to see how the 
outputs will be function on our unit.  
 
Physical modeling is currently being implemented in AutoDesk Inventor. The enclosure 
to the machine will be well dimensioned and fit together to then be milled on a CNC 
machine. Later on once we have proof of concepts for our whole project, a final, metal 
prototype will be built. See the above figures to reference what the design will look like.  



24 

Interface Specifications 
 

Figure 3: Design Diagram  



25 

 
# Name Motion / States Function 

1 Expression Pedal Rocking motion On certain sound effects, this will 
adjust the effect depending on its tilt. 

2 FX Control Knob 1 Non-stop rotation Changes the level of an aspect of the 
current effect.  

3 FX Control Knob 2 Non-stop rotation Changes the level of an aspect of the 
current effect.  

4 FX Control Knob 3 Non-stop rotation Changes the level of an aspect of the 
current effect.  

5 FX Control Knob 4 Non-stop rotation Changes the level of an aspect of the 
current effect.  

6 Aux Volume Knob Non-stop rotation Changes the volume for the aux input. 

7 MIDI Volume Knob Non-stop rotation Changes the volume for the MIDI 
input. 

8 Mic Volume Knob Non-stop rotation Changes the volume for the mic input. 

9 IN Volume Knob Non-stop rotation Changes the volume for the IN input. 

10 Master Volume Knob Non-stop rotation Changes the volume for the entire 
device. 

11 Layer 1 Level Knob Non-stop rotation Adjusts the volume of layer 1 in the 
mix. 

12 Layer 2 Level Knob Non-stop rotation Adjusts the volume of layer 2 in the 
mix. 

13 Layer 3 Level Knob Non-stop rotation Adjusts the volume of layer 3 in the 
mix. 

14 Layer 4 Level Knob Non-stop rotation Adjusts the volume of layer 4 in the 
mix. 

15 FX Stomp Switch 1 Click Toggle 
On/Off  

Activates the effect saved to effect 
slot 1. 

16 FX Stomp Switch 2 Click Toggle 
On/Off  

Activates the effect saved to effect 
slot 2. 



26 

17 FX Stomp Switch 3 Click Toggle 
On/Off  

Activates the effect saved to effect 
slot 3. 

18 FX Stomp Switch 4 Click Toggle 
On/Off  

Activates the effect saved to effect 
slot 4. 

19 Alt. Selection Stomp 
Switch  

Click Activate  Tap once to switch between FX stomp 
switches selecting effects and 

selecting layers. Double tap to select 
all layers. 

20 Loop Start Switch Click Activate Triggers the recording of a new loop. 

21 Loop Stop Switch Click Activate Triggers the end of a new loop 
recording. 

22 Layer 1 Indicator 
LED 

On/Off Indicates that layer 1 is currently 
selected. 

23 Layer 2 Indicator 
LED 

On/Off Indicates that layer 2 is currently 
selected. 

24 Layer 3 Indicator 
LED 

On/Off Indicates that layer 3 is currently 
selected. 

25 Layer 4 Indicator 
LED 

On/Off Indicates that layer 4 is currently 
selected. 

26 FX Display Dynamic Displays the current effect’s 
information. Also displays the menu 

when appropriate. 

27 Layers Display Dynamic Displays the four layers currently 
recorded. 

Table 2: Interface Specificiations  



27 

High Level Block Diagram 
 
Below is a block diagram detailing the interconnectivity of the environment our product 
will function within. 
 

 
Figure 4: Block Diagram  



28 

Implementation Issues and Challenges 
 
Digital / Analog Audio Conversion 
 
We want our device to take audio input from a variety of devices, primarily instruments. 
These can be anything from guitars to synthesizers. The issue for our project is that 
some of these output a digital audio signal, while others output an analog audio signal. 
Our team is facing the challenge of being able to handle both types. We are doing this 
using an analog-to-digital converter (ADC) and a digital-to-analog converter (DAC).  
 
Manipulation of Sound Data 
 
After we have the audio data from the input, we want to be able to manipulate it. This 
manipulation will be an effect that modifies the sound wave to produce a unique audio 
profile. The members of our team do not have strong backgrounds in audio signals or 
sound waves prior to this project. As such, our team faces the challenge of figuring out 
how to perform the sound manipulation we desire. This spans from choosing the right 
programming language to selecting proper algorithms, as well as research into the 
physics of sounds. 
 
Displaying Audio Information Intuitively 
 
With our technological knowledge and backgrounds, we have a better toolset to 
understand the data that is presented by our device. Our team is keeping in mind, 
however, that the primary user for our device - musicians - may not have a technical 
background. The challenge this presents is displaying all necessary information in a 
way that is intuitive for our end-user to understand. As we work on the project, we plan 
to have many user-interface (UI) options to acquire feedback on, By the end of 
development, we hope to achieve the goal of an informative and intuitive UI design. 
 
Minimizing Audio Latency Between Input/Output (I/O) 
 
Our device is to be used primarily in a live setting - such as a concert or other music 
performance. In these types of settings, timing is everything. As such, we have the 
issue of latency between I/O and the device’s processing hardware. Latency is 
essentially the delay between the request for the transfer of data and the actual 
transferring of the data. For example: a high latency would be like flipping a light switch, 
then the light switching on a couple of seconds later. A low latency would make the time 
between flipping the switch and the light coming on near instantaneous. Our team’s 
challenge is reducing the amount to latency in our device, both hardware and software, 
as much as possible. 
 
 
 
 



29 

Having Enough Processing Power for Audio Manipulation 
 
A major hardware-related challenge that we are working on is the processing power 
needed to manipulate and process the sound data. The biggest contributor to this 
challenge is the desire for our final product to be of a more compact size than carrying 
around a small computer.  
 
To do this, we are utilizing a Single-Board Computer (SBC) as our main controller. 
While the Raspberry Pi is the most recognizable SCB, it does not fit our needs; instead, 
we are using the ROCKPro64. This Single-Board Computer has 4 GB of LPDDR4 RAM 
versus the Pi’s 1GB of LPDDR2 - meaning more RAM at a significantly faster speed. 
Furthermore, the ROCKPro64 has a hexa-core processor, which provides more 
processing power than the Raspberry Pi’s quad-core processor. 
 
If we do find that more processing power is needed, the ROCKPro64 includes a PCIe 
x4 slot. With this slow, we are capable of using a dedicated sound card for our audio 
processing. This additional hardware is optimized for working with sound data and frees 
up additional processing power from the central processing unit (CPU) that can be used 
for other functionality, such as connectivity with the mobile app. The issue may still arise 
if further processing power is needed. If it does, we will look into alternative plans of 
action. 
 
Managing Two Displays 
 
Since our design calls for two displays to be working simultaneously, we have the 
challenge of managing the UI and functionality of both. Our devices has one display that 
is used for displaying menus, is controllable using hardware knobs on the device, and 
activates back-end code to modify the system. For this functionality, we need a display 
port that can handle input, in addition to output. The single-board computer (SBC) we 
have chosen, the ROCKPro64, includes a MiPi-DSI port. This port is a high-speed 
interface that connects the display to the processor, enabling a two-way connection. For 
our second display, we do not require control. This display will simply convert its output 
to HDMI and attach to the ROCKPro64’s HDMI port. 
 
Build Weight Versus Structural Integrity 
 
Although our device will rest on the ground during use, it is not wholly stationary - i.e. 
the user needs to be able to carry it around. Therefore, we want our device to be light 
and easy to transport. On the other hand, being similar to guitar pedals, our device’s 
switches will be mainly pressed quickly with a foot - hence the name “stomp boxes”. 
This presents the issue of having the device be light without sacrificing the structural 
integrity and being easily damaged during normal use. To find a solution, we are 
experimenting with different build materials for the final product. For building prototypes, 
we are planning to 3D print an enclosure. 
 



30 

Design Analysis 
 
Strengths 
 
Versatility: Our device has the strength of being highly versatile, both in hardware and 
software. Below are highlights of this versatility. 
 
Software 

● Loops 
○ Our device, the Cyren, has several software, including the ability to work 

with loops. The device can record, play, and modify multiple loops from 
multiple inputs. Each of these instruments could be mapped to a different 
instrument, or be loops from the same instrument. To increase the 
versatility further, the loops can be played in tandem to produce a full song 
with a single device. The diverse musical applications are numerous with 
this feature. 

● Effects 
○ Alongside looping capabilities, our device also enables the user to modify 

their sounds using effects. These effects can be applied directly to the 
audio as it’s being recorded. The effects can also be added to tracks that 
have already been recorded in a loop.  

○ The effects are adjustable via physical knobs that are dynamically mapped 
to different aspects of the effect, including: gain, volume, speed, etc. Once 
an effect has been modified to the user’s liking, they are able to save the 
effect as a profile that can be saved-to and loaded-from memory. 

 
Hardware 

● Interfacing With Devices 
○ As stated above, our device can take input from multiple devices at once. 

Furthering that idea, we want to be able to support a diverse set of 
devices. To do this, we are allowing the device to connect with many 
different connection types. To name a few, there are: XLR, 3.5mm, aux, 
etc. This versatility in hardware is a great strength for the Cyren, allowing 
our users a greater toolset for their creative endeavors. 

 
Visualization: In addition to versatility, our device’s strengths come from the ability to 
visualize sound data in a meaningful way. While our backgrounds are in technical fields, 
the same may not hold true for our users. This fact means we must present the data in 
a way that they, mainly musicians, can understand. We do this primarily with the 
following aspects. 
 
Visualizing Sound With Waves 

● When coming up with how to display our data to the user, we looked at existing 
music manipulation software, also known as a digital audio workspace (DAW). 
These DAWs almost always displayed their data via waveforms. Our team 



31 

implemented our visuals on this same concept. Using a visualization that is 
standard across other tools of the same nature, we reduce the learning curve of 
using the Cyren. 

● The wavelengths of the recorded loops will be visible to users at all times and will 
be created in real-time when recording a loop. This will enable the user to make 
better, more informed decisions during a performance. For example, if they see 
that the wavelength is too large, they can know to play softer to obtain a better 
sound.  

 
Standardized Physical UI 

● In addition to the software, we also want the hardware to be somewhat familiar 
with our intended user, the musician. To achieve this goal, we researched other 
devices such as guitar effect pedals, keyboards, synthesisers, MIDI controllers, 
and more. From that research, we selected the most common hardware 
interfaces and used them for the Cyren.  

● The most common aspect we found on almost all of these devices were knobs 
that controlled levels of some aspect. Our device also utilizes knobs in the same 
fashion - to control levels of components, such as volume. The next most 
common hardware component across these devices was the tactile foot switch. 
These switches are found on nearly every guitar effect pedal on the market. 
These pedals are also commonly called “stomp boxes”, as the guitarist will stomp 
on the switch mid-song to quickly activate an effect. In using these two 
components on our device, we have increased familiarity with new users who 
have previous musical experience. 

 
 Weaknesses 
 
Large Amount of Knobs: One of the weaknesses of the current design of the Cyren is 
the copious amount of knobs. We currently have the following knobs: 

● 4x knobs for the dynamically allocated effect controls 
● 4x knobs for controlling the four layers of recorded loops 
● Aux volume knob 
● MIDI volume knob 
● Mic volume knob 
● IN volume knob 
● Master volume knob 

With a total of thirteen knobs, we fear the user will overwhelmed when first getting 
acquainted with our tool. We will look into alternatives for the next iteration of our 
design. 
 
Placement of Pedals: Another weakness the current design of the Cyren has is the 
place of the pedals. We have three pedals: one for starting a loop recording, one for 
ending a loop recording, and an expression pedal for use with certain sound effects. 
Since these pedals are actuated using the users foot, they need to be oriented 
completely horizontal. This conflicts with the orientation of our screens and knobs, 



32 

which are at an angle to provide the user with easier visibility. As a result, the current 
placements of the pedals are as separate units. This diminishes the portability and 
all-in-one aspect of the Cyren. 
 
Accessibility to Main Control Unit: With the current design of the Cyren, it has a 
weakness with the ease of which the main control unit, the ROCKPro64, can be 
accessed. Since we are actively developing and modifying the connections to the 
control unit, we want to be able to access the controller’s interface simple. However, the 
current design has the ROCKPro64 nested comfortably inside of the Cyren’s enclosure. 
This makes it difficult to access during development, as well as making maintenance on 
the final product a frustrating task. 
 
 
Wire Slack: There is a weakness with the current design regarding the inner wiring of all 
the components. As this is an early design and components are not yet permanent, we 
have not put the time into wire routing. This means that the bulk of the wiring is loose 
inside of the enclosure - causing issues like wires getting disconnected or shorted. 
Furthermore, this wire issue can become a fire hazard in the right conditions. Once we 
have finalized the component decisions, we will be able to design particular routing 
measures for the wiring. 
 
Rough Visual Aesthetic: This weakness is simple, but a weakness nonetheless. Since 
this is design is more a proof-of-concept than a product to be sent to market, we have 
focused more on the functionality of the Cyren, versus its visual appeal. We expect this 
aspect of the device to approve with future iterations. The biggest change will come at 
the end of the development cycle, when we have the device functioning fully to design 
specifications. 
 
Observations 
 
Close Proximity of Controls May Be Frustrating: Our team wants the Cyren to be fairly 
compact and mobile. Combined with the desire for the system to be versatile, many of 
our controls sit close together on our hardware interface. Our users, being musicians, 
will need to adjust the controls while in the heat of a performance. The close controls in 
this situation could result in a knob being turned unintentionally, or a switch being 
triggered on accident. This is an aspect we will be paying attention to when testing this 
design. 
 
We do not know the lifespan of individual components: Since many of our hardware 
components do not have documentation on extended usage and we do not have a large 
amount time for this sort of testing, our team can not know the individual lifespan of 
each individual component. If any of these components fail, then the entire system will 
not function to full capacity. As such, we cannot accurately predict the lifespan of the 
Cyren as a whole. With more time, we will be able to do extensive testing in this area - 
ideally before the Cyren goes to market.  



33 

Process Details 
 
As we are still currently designing the majority of the project, our current progress is in 
the planning stage. Like mentioned in the technical approach, we are in the midst of 
performing research and proofs of concepts for the various different technologies we 
could be using. Being that there are so many different ways to perform the same thing, 
we want to make sure we use choose the technologies that suit us best. We managed 
to separate the project and their deliverables into these sections: input and output 
modules for microprocessor, the microprocessor, the enclosure, system level api to 
interact with input and output modules, core code base to run our software, and the user 
interface (visuals). 
 
We have came to a few conclusions on the different technologies will be using and why. 
We knew we needed a microprocessor that could manage many inputs and outputs 
requiring a decent processor, a respectable amount of RAM, and as many input and 
output pins as possible. With that we decided on the Rock Pro as it meets our 
requirements and outperforms other microprocessors for what we need. When using 
analog inputs with a digital editing software and then outputting them through analog, 
we performed research on what analog to digital converter (ADC) and digital to analog 
converter (DAC) to use. We have not concluded on this yet, as it is one of the most 
important parts of our design. To utilize the ADC and DAC buffer best, along with all the 
various I/O buttons/screens on the device, we decided on designing our software in C. 
By using C we can easily interact with various hardware components compared to other 
languages. Being that we decided on using C for the core of the project, we decided to 
use GTK as it integrates with C seamlessly and provides a beautiful user interface. GTK 
will generate on-click listeners similar to Javascript that will point to C methods we 
created in the core. Lastly, we know we need a durable enclosure so we will be using 
CAD to design the most compact and durable enclosure we can. We plan to use metal 
for the enclosure to ensure its lifespan.  



34 

Testing Requirements Considerations 
 
Validation and Acceptance Test 

 
First to address the testing we must define what functionality the user expects in the 
product. 
 
The user expects to be able to: 

1. Edit their music with many different types of sound effects 
2. Mix together sound effects 
3. Record music 
4. Replay/Loop 
5. Stack Loops on top of each other 
6. Use pedal to control sound effects 
7. Visualize the sound effects through a UI both in the software and on the pedal 

itself 
8. Be compatible with standard I/Os for musical instruments 

 
Test Plan 

 
Now we have to test each of these requirements to make sure the user is able to do 
these things. 
 
We will test the above requirements with the following tests: 

1. Use the product in person with standard musical instruments owned by project 
members and confirm success and variety of sound effects. 

2. Experiment with the product’s sound effect mixing and assure that there aren’t 
bugs in mixing types. Also created automated tests that run through 
combinations to ensure there are no bugs. 

3. Test the limits of the recording process, i.e. keep recording for as long as 
possible, create test recordings to see how long of a recording can be stored, 
etc. 

4. Perform replays of the recordings and listen to the audio and analyze the audio 
to ensure it matches the recording. 

5. Once again we need to prove that we can stack loops to create diverse sounds 
but then create automated tests of stacking multiple loops and making other 
sound effects to ensure there are no hidden bugs. 

6. Since almost all group members are musicians (and also have contacts that are 
professional musicians) we will want to use them as test subjects and record 
their feedback to ensure that the pedal is effective while playing music. 

7. Verify the working UI corresponds correctly to each physical configuration on the 
pedal to ensure no bugs. 

8. Test multiple standard I/Os in the musical market right now on the device and 
ensure proper compatibility. 

 



35 

Design Testing and Implementation 
 

 
Figure 5: Design Testing Flowchart 
 
This is the Design Implementation Flowchart that shows in what order each part of the 
device/system is completed. These terms are very broad and mostly just explain the 
basics of what is being done. For example, “Develop Software Application code base” 
refers to simply create a basic backend/console application that can perform some sort 
of basic function. The testing implementation can be furthered divided into functional 
and non-functional testing. Each of these testing procedures will be broken down in the 
following sections.  



36 

Functional Testing 
 

 
Figure 6: Functional Testing Flowchart 

 
This flowchart shows the order in which sections of the development process is tested. 
These test points on the flowchart do not go in depth as there is no need to explain 
each individual test but this helps show the order in which the tests will be created as 
well as when they will be tested. This compared with other flowcharts in this document 
help define which tests need to be completed between moving on to the next section in 
the design.  



37 

Non-Functional Testing 
 
#include libraries (including tiny test for assertions) 
 
int main(){ 
 

initialize_test_variables 
test_speed_requirements() 
test_maximum_audio_editing_limits() 
test_design_aspects_of_system() 
test_ease_of_system_use() 
test_max_number_of_users_at_once() 
test_musical_instrument_flexibility() 
test_saved_settings() 
test_hardware_durability() 

 
} 
 
These above pseudocode tests allow us to test non-functional parts of the system that 
may not always be fundamental to the working of the system however they are still 
required by our design as they are important to us and our client. As one can most likely 
see, these tests cannot all be encompassed in software and involve testing the 
hardware in the real world or other tests of such a nature. The point of these tests in the 
software is to rather record the results of the real-life test, for example if the test is 
“test_ease_of_system_use” the test could prompt the user (the tester) to enter in 
numerical feedback from test users and then calculate usage statistics and give the test 
a pass or fail based on some of these statistics. 
  



38 

Safety Considerations 
 
This project will follow the IEEE Code of Ethics:  
 
We, the members of the IEEE, in recognition of the importance of our technologies in 
affecting the quality of life throughout the world, and in accepting a personal obligation 
to our profession, its members, and the communities we serve, do hereby commit 
ourselves to the highest ethical and professional conduct and agree: 

1. to hold paramount the safety, health, and welfare of the public, to strive to comply 
with ethical design and sustainable development practices, and to disclose 
promptly factors that might endanger the public or the environment; 

2. to avoid real or perceived conflicts of interest whenever possible, and to disclose 
them to affected parties when they do exist; 

3. to be honest and realistic in stating claims or estimates based on available data;  
4. to reject bribery in all its forms;  
5. to improve the understanding by individuals and society of the capabilities and 

societal implications of conventional and emerging technologies, including 
intelligent systems;  

6. to maintain and improve our technical competence and to undertake 
technological tasks for others only if qualified by training or experience, or after 
full disclosure of pertinent limitations;  

7. to seek, accept, and offer honest criticism of technical work, to acknowledge and 
correct errors, and to credit properly the contributions of others;  

8. to treat fairly all persons and to not engage in acts of discrimination based on 
race, religion, gender, disability, age, national origin, sexual orientation, gender 
identity, or gender expression; 

9. to avoid injuring others, their property, reputation, or employment by false or 
malicious action;  

10. to assist colleagues and co-workers in their professional development and to 
support them in following this code of ethics. 

  



39 

Possible Risks and Risk Management 
 
Below is a risk assessment of the potential challenges we will come across as we are 
developing our design. The biggest hurdle that we will foreseeably have to address is 
the capability of the controller. The onboard controller must have the adequate 
hardware resources to handle multithreaded sound process and raw audio 
manipulation. This will require a powerful processor and ample RAM. We hope to 
mitigate this problem with efficient software and intelligent design. 
 

 
Table 3: Risk Assessment 
  



40 

Estimated Resources 
 
This analysis is clearly a rough estimate. Much refinement is needed to cut costs and 
optimize our device. The assumptions for this project’s costs were that we would use 
prefabricated materials, and use a basic microcontroller. Further component selection is 
needed in order to cut costs. 
 
Hardware 
 

 
Table 4: Estimated Resources  



41 

Software 
 

● GTK - free and open-source cross-platform widget toolkit for creating graphical 
user interfaces. GTK is licensed under the terms of the GNU Lesser General 
Public License (allowing free and proprietary software use).  

● Tiny Test - Is a unit testing framework designed for testing code written in the C 
programming language. Tiny test is a very simple and straightforward testing 
framework that would not take much time to understand and create tests. 

○ License: MIT License 
- Or - 

● CUnit - A unit testing framework designed for testing code written in the C 
programming language.  CUnit is a slightly more complex testing framework that 
may need to be used in the case that mocking will be necessary for system 
testing (which appears unlikely). 

○ License: GNU Free Documentation License 
● FLAC - An audio coding format for lossless compression of digital audio, and is 

also the name of the free software project producing the FLAC tools, the 
reference software package that includes a codec implementation. 
 

 
Figure 7: MP3 vs FLAC Figure 8: FFTW Visualization 
 

● Language: C  
● License: GNU GPL; Libraries: BSD (BSD licenses are a family of permissive free 

software licenses, imposing minimal restrictions on the use and distribution of 
covered software.) 

● FFTW - Is a C subroutine library used for computing the discrete Fourier 
transform (DFT) in one or more dimensions of both real and complex data. This 
is referring  to the transformation of a sound (or sine) wave. This library is 
important because it will serve as our digital signal processor (DSP).  

● FFTW (Fast Fourier Transform) is suitable for many types of applications 
because its flexibility. Below is an example of the principle behind the Fourier 
Transformation as applied to sound waves. Sound waves at different frequencies 
(blue sine waves) can be combined to form a final complex wave structure (red 
sine wave). 

○ License: FFTW is a free software. 
  



42 

Project Timeline 
 
For our project we needed to create a timeline to help us better be prepared and 
provide us a guide to follow. The better this timeline is, the more likely it will be easier to 
accomplish our goal. When creating this project timeline, we had to really break the 
project down and categorize what different parts there were in the project. Three of the 
biggest sections we found are the hardware, the user interface, and the connections 
between the two (API). As a group, we managed to discuss the type of process we 
would like to have moving forward. Being that there is a lot of research to be done, we 
wanted to use the Proof of Concept (POC) approach. By having members perform 
extensive research on certain topics, we can cover more ground. When someone 
finishes research, they are to be comfortable enough to share a synopsis of the 
research to the rest of the group while making a clear and decisive suggestion on 
whether the technology or idea researched would be ideal for our project moving 
forward, thus allowing us to not waste time during the research phase. We also 
provided time for much testing and refining at the end of the project’s timeline to ensure 
a quality project in the end. 
 

 
Table 5: Project Timeline  



43 

Conclusion 
 

Cyren will be used by musicians all over to create unique sounds with our sound effect 
system combined with multiple loopers that can be layered over one another. We as a 
group envision Cyren being used by a multitude of users, from beginners to experts, we 
want to provide a product that will find use for almost any guitarist looking to add looping 
or sound effects to their music. Our design is well constructed and follows IEEE 
guidelines. The project itself has been iterated upon countless times to reach the 
optimal solution and as a group we are quite pleased with the end result and are excited 
to start working on development. We hope to provide with this document the level of 
planning necessary to fill in any gaps in understanding and make Cyren a reality. 
 


